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Abstract

Real-time video segmentation is a crucial task for many real-world applications
such as autonomous driving and robot control. Since state-of-the-art semantic
segmentation models are often too heavy for real-time applications despite their
impressive performance, researchers have proposed lightweight architectures with
speed-accuracy trade-offs, achieving real-time speed at the expense of reduced
accuracy. In this paper, we propose a novel framework to speed up any architecture
with skip-connections for real-time vision tasks by exploiting the temporal locality
in videos. Specifically, at the arrival of each frame, we transform the features
from the previous frame to reuse them at specific spatial bins. We then perform
partial computation of the backbone network on the regions of the current frame
that captures temporal differences between the current and previous frame. This
is done by dynamically dropping out residual blocks using a gating mechanism
which decides which blocks to drop based on inter-frame distortion. We validate
our Spatial-Temporal Mask Generator (STMG) on video semantic segmentation
benchmarks with multiple backbone networks, and show that our method largely
speeds up inference with minimal loss of accuracy.

1 Introduction

Semantic segmentation [50, 51, 48, 4, 26, 8, 17] is a fundamental task in computer vision that is
crucial for many real-world applications including autonomous driving, robot control, augmented
reality, surveillance system, aerial imagery, drone image analysis, and medical diagnosis [38, 6, 53, 2,
1, 34, 23]. Recently, much focus has been placed on developing segmentation models for streaming
videos. This is a challenging task that requires not only high accuracy but also real-time inference
speed [18, 42]. However, majority of semantic segmentation models still rely on computationally
heavy backbone networks [13] to achieve state-of-the-art performance. These heavy backbones, in
most cases, become computational bottlenecks in the real-time video semantic segmentation pipeline.

One approach to tackle this challenge is to identify the key frames which are processed with
heavy backbone networks and to propagate the pre-computed features of key frames for other
frames [54, 21, 44, 55, 47] in the video stream. However, this approach is based on the assumption
that flow estimation and feature propagation are faster than running the backbone networks [54].
Since state-of-the-art lightweight architectures achieve real-time speed, this approach is not appli-
cable to modern segmentation models for real-time speed up. Further, the approach sacrifices the
segmentation accuracy of non-key frames even with accurate optical flow-based feature propagation,
thus maintaining the accuracy of non-key frames in this pipeline still remains a problem to be ad-
dressed. Hu et al. [18] exploit temporal information in videos to tackle this problem via a temporally
distributed network architecture. However, this strategy is suboptimal in that the sub-networks are
designed independently of individual frames with no consideration of temporal locality across frames.
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Figure 1: Conceptual Overview. Our proposed Spatial-Temporal Mask Generator (STMG) captures
temporally evolving regions (highlighted by the red box) between two consecutive frames using
spatial masks. This allows us to reuse the computed features from the previous frames for static
regions. Additionally, conditioned on the distortion between the two frames, we generate a block
pruning mask that determines which residual blocks to drop when running the segmentation model
on the current frame. The transformed features from the previous frame are then combined with the
output of the partial network computation using a feature aggregation module (FAM).

To tackle these issues, we propose a novel method to achieve practical speed-ups for real-time
video semantic segmentation networks, exploiting spatial-temporal locality to create input-dependent
sub-networks that preserves accuracy on both key and non-key frames at inference time. Specifically,
we propose an input-dependent block-wise pruning mechanism to obtain inference time dynamic
sub-networks tailored to each frame by exploiting the resiliency of residual networks to the removal
of residual blocks at inference time due to their skip-connections. That is, we learn a masking
mechanism that decides which residual blocks to drop and which to keep, conditioned on a given
input frame and spatial-temporal information across previous frames.

While the partial computation of residual blocks produces real-time speed-ups, it still suffers from the
speed-accuracy trade-off problem. To compensate for this, we further exploit the temporal locality of
video frames as depicted in Figure 1. In particular, we transform the features from previous frames for
reuse in the static regions across adjacent frames. We do this by generating spatial masks that capture
the distortion between adjacent frames. However in most video semantic segmentation datasets such
as Cityscapes [6], not all frames are labelled hence we utilize knowledge distillation by employing a
strong image segmentation model as a teacher network to train the spatial mask generator.

Figure 2: Performance on Cityscapes. Our pro-
posed method, Spatial-Temporal Mask Generator,
provides a better trade-off between mIoU and FPS.

In addition, to avoid information loss due to repeated
partial computations for sequential frames, we in-
troduce a distortion-aware scheduling policy which
determines non-key frames to apply the proposed
model. Specifically, we consider frames with distor-
tions greater than some set threshold as key frames,
and invoke the full network to compute their fea-
tures. Crucially, when a frame is determined to be
a non-key frame, we transform the feature from the
previous frame, and perform partial computation of
the backbone network only in spatial regions that
change from the previous frame. The resulting model,
Spatial-Temporal Mask Generator (STMG) achieves
a better speed-accuracy trade-offs compared to se-
mantic and video semantic segmentation models as
shown in Figure 2. Our contributions are three fold:

• We propose a framework to speed up the inference of residual backbone networks for real-time
video semantic segmentation by performing partial network evaluation and reusing temporally
consistent features across frames.

• We propose a method to capture spatial-temporal information across frames based on inter-frame
distortion without heavy optical flow computations.

• We validate our method on two benchmarks against multiple state-of-the-art real-time video
segmentation models and show that our method can speed up models with residual backbones at
inference time with marginal loss of accuracy.
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Figure 3: The overall process for video segmentation. Our framework exploits spatial-temporal
properties by extracting features from images of adjacent frames and utilizing them to compute both
spatial mask and block pruning mask. In detail, a 2D mask is generated by calculating the cosine
similarity between two features and utilized as a ratio to blend the features pixel-wisely (spatial mask).
These spatial-temporal properties are transferred to learn the block dropping behavior by providing
the extracted features to generate the block pruning mask by concatenation (block pruning mask).

2 Related Work

Semantic Segmentation While the literature on semantic segmentation is vast, we only describe
few recent works that are relevant to ours. Deep convolutional neural networks have been widely used
in semantic segmentation tasks by adopting a data-driven approach to improve accuracy. By providing
an effective global contextual prior and fusing local and global context features, the networks can
learn details and semantics simultaneously [50]. With urban scene properties where each row of the
image has different statistics in terms of category distribution, each row of the feature map can be
individually more focused on a specific channel using a height-driven attention map [5]. Explicitly
exploiting visual dependency relations, such as intra-class, inter-class and global dependence among
semantic entities, networks can improve the generalization ability [31].

Real-time Semantic Segmentation Modern approaches to real-time semantic segmentation usually
adopt a strategy of reducing the size of an input image provided to the residual backbone, as residual
networks are considered to be bottlenecks in the overall computation [51]. Reducing the size of
an input image generally degrades spatial resolution, which leads to a degradation of performance.
Hence recent approaches adopt a strategy of designing a dual-resolution path consisting of a spatial
path and a context path [48, 49]. The spatial path with a high-resolution feature adopts a small
stride to preserve the spatial information while a context path with a low-resolution feature adopts a
fast downsampling strategy to obtain sufficient receptive field. Bilateral connections between dual
resolutions are continuously repeated as the network deepens for efficient information fusion to
deliver the state-of-the-art performance of the latest models [17].

Video Semantic Segmentation Zhu et al. [54] and Li et al. [28] introduce scheduling policies
to identify key frames to apply heavy neural networks and propagate the feature across multiple
frames sequentially. That is, features are reused and this reduces the computational requirements
on non-key frames. Adaptive scheduling policies that select key frames based on changing video
dynamics instead of heuristic policies have been recently proposed in Xu et al. [47], Wang et al. [44]
and He et al. [12]. However, these policies are still suboptimal in that the candidates for sub-networks
are limited to a subset of image segmentation network with feature propagation module which are
pre-defined before the training stages resulting in a non-dynamic neural network architecture.
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Dynamic Network Pruning Residual networks [13] are composed of residual blocks and skip
connections which enable them to behave like ensembles of relatively shallow networks [41]. These
networks have been shown to be resilient to layer dropping, usually with minimal loss of accuracy. In
Wang et al. [43] and Wu et al. [46], this resilience to layer dropping is exploited using reinforcement
learning to prevent over-parameterization in residual networks. Li et al. [27] exploits contextual
information to develop dynamic routing methods that adapt to the scale of the input image for the
semantic segmentation task. Furthermore, He et al. [14] focuses on utilizing spatial information for
channel-wise pruning [15, 29] of the semantic segmentation networks. However, for video semantic
segmentation, such methods that exploit spatial information are insufficient since they do not consider
the temporal nature of videos. Hence, to fully utilize contextual information in the video semantic
segmentation task, the spatial-temporal properties have to be taken into account.

Dependent Beta-Bernoulli Process In latent feature model, the Indian buffet process [11] defines
a prior distribution on the binary feature indicators with potentially infinite number of features.
Dependent Indian buffet process and its finite-dimensional beta-Bernoulli approximation [45, 52, 37]
extend the Indian buffet process (IBP) to incorporate input covariates as follows:

φk ∼ p(φk), zn,k|φk,xn ∼ Ber(g(φk,xn)), (1)

where g is an arbitrary function mapping φk and xn to a probability. The input covariates xn

corresponds to the inputs of a certain layer and dropout probabilities are adjusted according to xn in
the dependent beta-Bernoulli dropout.

3 Method

In this section, we first introduce our dynamic block pruning mechanism based on spatial-temporal
locality. We then describe a spatial-temporal mask generator for feature transformation and reuse
based on the distortion between adjacent frames. The overall framework consists of two networks,
the segmentation network and the mask generator. Note that the proposed method is model-agnostic
and applicable to any semantic segmentation model with a residual network.

3.1 Input-dependent Block Pruning

In this section, we describe the input-dependent block pruning mechanism. Let Ŵ be the parameters
of a residual neural network with xn as input and let zn ∈ {0, 1}K be a binary mask vector generated
for the input xn where K is the number of prunable residual blocks. Note that the first block in each
residual layer is not prunable. Conditioned on the input xn, we define the input-dependent residual
block pruning probability φ(xn) ∈ [0, 1]K for xn and generate a binary mask vector zn for each
block as follows:

zn,k ∼ Ber(φk(xn)) for k = 1, . . . ,K. (2)

That is, given a residual network with K prunable blocks, we model the block pruning probability of
each individual block as a Bernoulli random process follows:

ψ(u|xn) =

K∏
k=1

φk(xn)
uk(1− φk(xn))

1−uk , (3)

where uk ∈ {0, 1} indicates whether to prune or keep the k-th residual block.

In this paper, we model the transformation process from images into pruning probabilities with a
Bayesian approach by inducing sparsity with the batch normalization [20] layer of the pruning model
inspired by Lee et al. [25]. To obtain a sparse pruning mask, we impose a sparsity inducing prior on
φk(xn) and independently compute the residual block pruning probabilities as follows:

φk(xn, βk) = clamp

(
γk
gk(xn)− µk

σk
+ βk, τ

)
, (4)

where gk(xn) denotes a transformation of xn using the non-linear function g for the k-th residual
block, µk and σk are the estimates of the k-th component’s mean and standard deviation of the
transformed inputs, γk and βk are scaling and shifting parameters, and τ > 0 is some tolerance to
prevent overflow, which is set as 1e−10 while clamp(x, τ) = min(1− τ,max(τ, x)).
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Figure 4: Illustration of input-dependent block
pruning. We visualize how the extracted features
t and e are utilized by STMG for generating the
residual block pruning probabilities.

During the optimization phase, zn,k is sampled from
the relaxed Bernoulli distribution. Specifically, by
passing δuc ∈ RK to a softplus function and sam-
pling ϵ ∼ N (0, I) to provide a variability during
the optimization stage, the sparsity inducing prior on
φ(xn), which is N (βp, ρI), and the trainable param-
eters of β are defined as follows:

β ∼ N (βbn, δ), βp ∼ N (βp, ρI), (5)

while βbn is obtained with batch normalization layer
and δk = ϵk · softplus(δuc,k) is obtained with δuc
and ϵ during the optimization phase.

That is,DKL[β∥βp], the KL divergence loss for spar-
sity inducing prior on φ(xn) is defined as follows:

DKL[β∥βp] = log
ρ

δ
+
δ2 + (βp − βbn)

2

2ρ2
, (6)

where ρ and βp are constants for sparsity inducing prior and δ and βbn are trainable parameters of
the pruning mechanism. An illustration of the pruning method is depicted in Figure 4.

3.2 Spatial-Temporal Mask Generator

We describe the Spatial-Temporal Mask Generator (STMG) which generates two types of mask: a
block pruning mask and a spatial mask, based on spatial-temporal information. An overview of the
mask generator is depicted in Figure 3.

Block Pruning Mask Based on the input-dependent block pruning method previously described,
we develop a block mask generator for prunable residual blocks. Specifically, the mask generator
takes as input two adjacent frames, Ipre and Icur, and processes each frame using a feature extractor,
Encf , with shared weights across all frames. We then concatenate and pass the outputs of the feature
extractor to another convolution layer to generate a pruning mask with the same dimensionality as
the number of residual blocks in the backbone network as follows:

t = Encf (Ipre), e = Encf (Icur), mb = H(t⊕ e), (7)

where t and e are extracted features from the previous and current frame, mb denotes a block pruning
mask and H denotes overall transformation of the input in the pruning mechanism.

Spatial Mask In addition, to compensate for information loss due to the partial computation of
residual blocks, we propose a spatial masking scheme which exploits the temporal locality of videos.
Specifically, we generate a spatial mask, msp, which predicts unchanged regions between adjacent
frames together with the block pruning mask. By applying the spatial mask on the features of the
previous frame, we transform the feature from the previous frame for reuse in the current frame. This
is done by computing the cosine similarity between the outputs of the feature extractor from the
previous frame and current frame denoted as t and e as follows:

msp,i(t, e) = −0.5× cos(ti, ei) + 0.5, (8)

where msp,i denotes a spatial mask of the i-th pixel and we scale the value to be in the range of [0, 1].

Knowledge Distillation However, the cosine similarity between t and e from adjacent frames
alone is not sufficient for encoding meaningful spatial-temporal information. To further improve
the quality of the features, we add an auxiliary loss to match the generated spatial mask with the
ground-truth distortion map. Since not all frames in the dataset are labeled, we utilize knowledge
distillation [16] to generate ground-truth distortion map as shown in Figure 6 (b). Specifically, we
generate the ground-truth distortion map by subtracting the segmentation maps obtained by applying
a strong image segmentation model on two adjacent frames. Following Deng et al. [7], the loss
function for spatial mask consists of the binary cross-entropy loss and dice loss, as follows:

Lrecon(msp,n) = Lbce(msp,n) + Ldice(msp,n), (9)
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Algorithm 1 Distortion-aware scheduling
Input: Frames V = {I0, I1, . . . , In}.
Output: Video segmentation maps S =
{S0, S1, . . . , Sn}.

f0 ← Key Frame
σ ← |msp;1| = distortion(I1, I0)
for i in range(1, n) do

if |msp;i| > σ then
fi ← Key Frame
σ ← γ1;i ∗ |msp;i|

else
fi ← Non-Key Frame
σ ← γ2;i ∗ |msp;i| (γ2;1 = 1)

end if
end for

Figure 5: (Left): Illustration of distortion-aware key frame selection. At the arrival of a new frame,
we first calculate the distortion of adjacent frames to determine key and non-key frames. (Right):
Pseudo-code for distortion-aware scheduling policy. For good balance between key and non-key
frames, we update the threshold value scaled by a factor γ.

where n denotes the ground-truth distortion map obtained by knowledge distillation. The dice loss
alleviates the class-imbalance problem, as only partial spatial areas are distorted between adjacent
frames. The dice loss, Ldice, is computed as follows:

Ldice = 1− 2
∑
msp,ini + κ∑

m2
sp,i +

∑
n2i + κ

, (10)

where κ is a smoothing value set as 1 to avoid zero division. Ldice is the cornerstone for generating
crisp edges while optimizing only the cross-entropy loss leads to relatively coarse results.

Feature Aggregation Using the generated spatial mask, we aggregate features of the segmentation
model from the previous frame and current frame as follows:

π′(Icur) = msp · π(Icur) + (I−msp) · π(Ipre), (11)

where π(·) is the output of the backbone segmentation network. In particular, we intend the network
to focus more on features for distorted regions, while reusing features from previous frames for static
regions. Specifically, we pass the aggregated feature π′(Icur) to the segmentation head module to
obtain the semantic segmentation map for the current frame.

3.3 Distortion-Aware Scheduling Policy

While we compensate for information loss by reusing the features from previous frames, error in
the features propagate as time progresses. Hence, we propose a scheduling policy that applies the
proposed module only to specific non-key frames. We do this by capturing the amount of distortion
using the spatial mask for each frame. Specifically, if the distortion for a given frame is greater
than some set threshold, we consider it as a key frame and compute the full network on the frame.
However, if the distortion is lower than the threshold, we consider the frame a non-key frame and
transform the features from the previous frame for reuse as well as perform partial computation of
the residual blocks using the generated input-dependent mask.

Scaling Factor After each computation, we update the threshold value with the distortion amount
of the current frame scaled by a factor γ. To prevent the full network from being applied to more than
one frame in a row, we assign a value of 2 to γ1 and update the threshold value with a multiplicative
factor of γ1 right after a key frame so that the next frame can be determined as a non-key frame.
Additionally, to avoid situations where partial computations are repeated over sequential frames, we
assign a value of 0.95 to γ2 right after a non-key frame and update the threshold value with the current
distortion factor multiplied by γ2 so that the next frame can be slightly induced as a key frame. Most
video semantic segmentation frameworks adopt a strategy of propagating features across multiple
frames sequentially, however this require a heavy optical flow computation since errors propagate as
time progresses. Since our method targets real-time speed-up without optical flow computation, we
adopt a strategy of frequently switching between key and non-key frames with proposed scaling rules.
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Table 1: Performance comparison with real-time (> 30
FPS) semantic segmentation models on Cityscapes [6].

Model mIoU FPS FLOPs Params

PP-LiteSeg-T1 [36] 73.1 273.6 - -
SwiftNetRN-18 [35] 75.4 39.9 104.0G 11.8M
SFNet-DF2 [26] 75.8 61.0 48.5G 10.5M
BiSeNetV2-L [49] 75.8 47.3 118.5G -
HyperSeg [33] 76.2 36.9 7.5G 10.1M
CABiNet [24] 76.6 76.5 12.0G 2.6M
STDC2-Seg75 [8] 77.0 97.0 - -
RegSeg [10] 78.1 30.0 39.1G 3.3M

DDRNet-39 [17] 80.3 22.1 261.8G 32.4M
- STMG-DDR39 79.1 32.6 175.2G 22.9M

DDRNet-23-Slim [17] 77.6 108.2 33.8G 5.7M
- STMG-DDR23-Slim 76.2 116.0 27.2G 4.9M

Table 2: Performance comparison with video seman-
tic segmentation models on Cityscapes [6].

Model mIoU FPS Max Latency

DVSNet [47] 63.2 30.3 -
CLK [39] 64.4 6.3 198 (ms)
DFF [54] 69.2 6.4 575 (ms)
GRFP(5) [32] 73.6 3.9 255 (ms)
TD4-Bise18 [18] 75.0 47.6 21 (ms)
FANet18 [19] 75.5 72.0 14 (ms)
PEARL [22] 76.5 1.3 800 (ms)
LVS [28] 76.8 5.8 380 (ms)
TD2-PSP50 [18] 79.9 5.6 178 (ms)
TMANet50 [42] 80.3 2.0 500 (ms)
NetWarp [9] 80.6 0.3 3004 (ms)

STMG-DDR39 79.1 32.6 46 (ms)
STMG-DDR23-Slim 76.2 116.0 10 (ms)

These scaling rules provide a good balance between key and non-key frames while simultaneously
capturing video dynamics and leveraging spatial-temporal locality. An illustration of this scheduling
policy together with pseudo-code is provided in Figure 5.

4 Experiments

4.1 Setup and Implementation

Dataset We evaluate our method on Cityscapes [6]. Cityscapes is a dataset for urban-scene parsing
consisting of 5,000 images of urban street scenes with 19 classes. The dataset contains 2,975 finely
annotated images for training, 500 images for validation, and 1,525 images for testing. We evaluate
our method based on the standard semantic segmentation evaluation metrics: mean class-wise
intersection over union (mIoU), and Frames Per Second (FPS). Cityscapes is made up of snippets
each consisting of 30 frames with the 20th frame of each snippet annotated. Hence, we train and
evaluate our model on the 20th frame of each snippet with the image from the previous frame given.
We also evaluate our method on CamVid [3] which is a road-scene parsing dataset. The results for
the CamVid experiments are reported in Section A of the supplementary file.

Models and Baselines We select two state-of-the-art real-time semantic segmentation models for
our experiments: DDRNet-39 and DDRNet-23-Slim. Since DDRNet models have residual blocks
both in the high and low resolution branches, we apply our dynamic block pruning mechanism in
both branches. To preserve the output dimension of each residual layer, we do not drop the first
residual block in each layer. This is because dropping the first block in each layer will not allow
forward propagation of the features in residual networks. Specifically, there are a total of 6 and 17
prunable residual blocks in DDRNet-23-Slim and DDRNet-39 respectively.

Implementation To train our models, we use mini-batch stochastic gradient descent (SGD) with
weight decay of 0.0005 and the momentum of 0.9. We use a batch size of 16 for training on the
Cityscapes dataset. We set the initial learning rate as 0.01 and train the model for 1,000 epochs
for DDRNet-23-Slim and 484 epochs for DDRNet-39. We also apply random cropping for data
augmentation with crop size of 1024 × 1024. We implement all models and conduct all experiments
using PyTorch. We train each model with two GeForce RTX 3090 GPUs for DDRNet-39 base models,
and two GeForce RTX 2080 Ti GPUs for DDRNet-23-Slim base models to reproduce the results.

Inference Speed Measurement We conduct inference speed measurement on a single RTX 2080
Ti. Following the evaluation procedure of Si et al. [40], Orsic et al. [35], and Hong et al. [17], we
remove the batch normalization layers after each convolutional layer during the speed measurement.
Specifically, we use the protocols established by Chen et al. [4] for a fair comparison. Since not all
frames are annotated in Cityscapes, we evaluate the speed of our model by sampling a portion of
the entire video sequence to include both key and non-key frames in the annotated frames. Further,
we report the maximum latency of our model along with the speed of our model as video semantic
segmentation models have varying latency between key and non-key frames. We compare the speed
of our model on two semantic segmentation backbone architectures: DDR-39 and DDR-23-Slim.
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Figure 6: Qualitative results of (a) our method and (b) visualization of the spatial mask. Black and
white represent static and distorted regions, respectively. During the training phase, a distortion map
is provided to STMG to better capture the spatial-temporal locality between adjacent frames. The
degree of sparsity refers to the pruning ratio among prunable residual blocks in the backbone.

Table 3: Ablation study on spatial and block pruning mask. msp

denotes a blending ratio of previous and current features while
mavg is the average value of msp in the corresponding STMG.

Pruning and Masking Methodology mIoU FLOPs Params

Random Block Pruning (w/o ft) 71.40 ± 0.14 175.6 ± 0.4G 22.8M
Random Spatial Masking 78.06 ± 0.02 175.2G 22.9M
Uniform Blending (msp = mavg) 78.69 175.2G 22.9M
Uniform Blending (msp = 0.5) 78.25 175.2G 22.9M

Ours (Spatial-Temporal Masking) 79.09 175.2G 22.9M

Table 4: Ablation study on distortion-aware scheduling policy.
R denotes a key frame duration length for the fixed policy and γ
denotes a threshold scaling factor for the distortion-aware policy.

Scheduling Policy mIoU FLOPs Params

Distortion-Aware Scheduling (γ = 0.95) 79.09 175.2G 22.9M
Distortion-Aware Scheduling (γ = 0.9) 79.43 187.6G 24.2M

Fixed Scheduling (R = 2) 79.73 ± 0.03 189.9G 24.5M

Table 5: FPS gain results. For a fair compar-
ison, we select and compare the model and
framework whose FPS of the base network
is closest to the base network of ours.

Framework (Model) FPS gain mIoU drop

TD4-Bise18 (Bise34) [18] 28.57% 1.32%
STMG-DDR39 (DDR39) 47.51% 1.47%

Table 6: Ablation study on FAM. For a fair
comparison, we use the same sparsity induc-
ing prior βp and the same KL scale factor
for per-frame block-wise pruning inspired
by dependent beta-Bernoulli dropout [25].

Model mIoU Drop FPS Gain

DDRNet-39 80.27 - 22.1 -
- Per-Frame Pruning 76.31 4.93% 41.7 88.7%
- Ours (STMG-DDR39) 79.09 1.47% 32.6 47.5%

4.2 Results

In Table 1, we report the experimental results on Cityscapes for the DDRNet-39 backbone network.
The results show that our method reaches 32.6 FPS which is a 47.5% gain over the base network
which runs at 22.1 FPS on high resolution images. The segmentation outputs are shown in Figure 6
(a) and in Section C of the supplementary file. We report similar results for the DDRNet-23-Slim
architecture in Table 1. As shown in Table 1, our method reaches 116.0 FPS with 7.2% FPS gain
compared to the base network. In both architectures, we increase the FPS with less than 2% drop
in accuracy. That is, STMG provides a better trade-off between accuracy and speed compared to
state-of-the-art models. We further visualized this speed-accuracy trade-off in Figure 2.

Degree of Distortion and Sparsity We visualize the generated spatial masks in Figure 6 (b). We
observe that the mask generator successfully encodes meaningful spatial-temporal information and
captures the distorted regions such as the edge movement of people or bicycles. As shown in Figure 6
(b), each example shows different degrees of sparsity and the results show a strong correlation
between sparsity and degree of distortion. To further improve the encoding of spatial-temporal
information, we add a distortion bias η to DBB [25]-inspired block pruning mechanism as follows:

φk(xn, βk) = clamp

(
γk
gk(xn) + η − µk

σk
+ βk, τ

)
, η = −msp,i + 0.5, (12)

where φk(·) denotes a block pruning probability of the k-th residual block. The resulting pruning
mechanism, distrotion bias-based DBB (dbb-DBB) achieves a stronger correlation between sparsity
and degree of distortion as shown in Figure 8. The comparison results are reported in Table 7.
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Frame T Frame T+1 Frame T+2 Frame T+3 Frame T+4 Frame T+5

Figure 7: Qualitative results of distortion-aware scheduling policy. Frames highlighted in red
represent key frames and other frames represent non-key frames. The third row shows that for static
video streams, the scheduling policy continues to perform partial computations on non-key frames.

Distortion-Aware Scheduling Policy As shown in Figure 7, the adaptive scheduling policy suc-
cessfully determines key and non-key frames by utilizing the distortion between adjacent frames.
Diverse dynamic key frame paths are generated which shows that the scheduling policy does not
generate a fixed configuration of key and non-key frames. For example, the 3rd row shows a repeated
non-key frame as the distortion over consecutive frames are small, and the 5th row shows repeated
switching between key and non-key frame when the distortion across frames becomes large.

Table 7: Performance on Cityscapes over
the DDRNet-39. "+dbb-DBB" represents a
pruning mechanism using the proposed dis-
tortion bias-based DBB (dbb-DBB). STMG
uses a default DBB [25]-inspired pruning.

Model mIoU FLOPs Params

STMG 79.1 175.2G 22.9M
STMG + dbb-DBB 79.3 188.7G 24.8M

Figure 8: Correlation between the degree
of distortion estimated by the spatial mask
generator and pruning sparsity in dbb-DBB.

Ablation Studies We conduct ablation studies to examine the
effectiveness of each component in our framework. As described in
Table 3, we conduct an ablation study on spatial masking and block
pruning. The results show that our proposed spatial masking trained
with knowledge distillation outperforms the model that uses random
or uniform blending with features of previous frame. The masking
method differs during the inference time and the identical trained
weights are used during the ablation study. Further, our DBB [25]-
inspired pruning mechanism outperforms the random pruning at
the same computational cost. As described in Table 4, the results
show that our distortion-aware scheduling policy achieves lower
FLOPs and parameters compared to the fixed scheduling policy.
In Table 6, we conduct an ablation study on our proposed feature
aggregation module (FAM), and we observe that the information
from the previous frame can compensate for the information loss
due to the dropped blocks in the backbone for the current frame.

We discuss the limitations and societal impacts of our work in the supplementary file, in Section E.

5 Conclusion

In this work, we proposed an efficient framework for real-time video semantic segmentation that
exploits the spatial-temporal locality of videos. Our framework reuses the features from previous
frames, and perform partial evaluation of the backbone network by taking into account the differences
between two consecutive frames. This partial network evaluation is done using an input-dependent
gating mechanism that decides which features and blocks to prune. Our framework is model-agnostic
and can be applied to any semantic segmentation models with residual backbone networks to speed
up their inference. We validated our method on two benchmark datasets with different semantic
segmentation models and showed that it significantly improves inference-time speed at the expense of
marginal drop in accuracy compared to baselines approaches that achieve lower inference speed-ups
with similar decreases in model accuracy.
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Supplementary File

Organization The supplementary file is organized as follows. In Section A, we first describe the ex-
perimental results on CamVid [3] of the proposed STMG framework and describe the implementation
detail and spatial masking method on CamVid. Also, we provide the code and dataset in Section B.
Then, we provide additional experimental results on Cityscapes [6] with visualization of examples
in Section C. Finally, we provide the additional experimental results on CamVid in Section D and
potential negative societal impacts and limitation of our work in Section E.

A Experiments on CamVid

CamVid Dataset CamVid [3] is a road-scene parsing dataset which is taken from the point of view
of a driving automobile. The dataset consists of 701 annotated images with 11 classes at 1 Hz and in
part 15Hz, in which 367, 101, and 233 images for training, validation, and testing, respectively.

Figure 9: Qualitative results on CamVid.

Table 8: Performance comparison with
real-time (> 30 FPS) semantic segmen-
tation models on CamVid [3] without
pretraining on Cityscapes [6].

Model mIoU FPS Resolution

BiSeNetV2 [49] 72.4 124.5 720x960
GAS [30] 72.8 153.1 720x960
PP-LiteSeg-T [36] 73.3 222.3 720x960
SFNet-RN-18 [26] 73.8 35.5 720x960
STDC2-Seg [8] 73.9 152.2 720x960
MSFNet [40] 75.4 91.0 768x1024
HyperSeg [33] 78.4 38.0 576x768

DDRNet-39 [17] 76.7 59.1 720x960
- STMG-DDR39 75.5 70.2 720x960

Table 9: Performance
comparison with video
semantic segmentation
models on CamVid [3].

Model mIoU FPS

DFF [54] 66.0 9.8
GRFP(5) [32] 66.1 4.3
ACCEL-18 [21] 66.7 5.9
NetWarp [9] 67.1 2.8
ACCEL-50 [21] 67.7 4.2
FANet-18 [19] 69.0 154
FANet-34 [19] 70.1 121
TD4-PSP18 [18] 72.6 25.0
TD2-PSP50 [18] 76.0 11.1

STMG-DDR39 75.5 70.2

Spatial Masking on CamVid We first learn the spatial masks using knowledge distillation as
described in the main paper. However, we found that it was difficult to learn spatial masks since
the amount of distortion between adjacent frames is too large in CamVid due to the low frame rate.
Thus, we utilize a fixed spatial mask value to aggregate the features from previous and current frames.
Specifically, the feature aggregation is computed as follows:

π′(Icur) = msp · π(Icur) + (1−msp) · π(Ipre), (13)

where,msp is fixed to 0.8. We found that setting a highermsp is crucial to compensate for information
loss due to the low frame rate by using more features from current frame than in the previous frame.

Implementation Detail We set the initial learning rate to 0.001 and train the model for 968 epochs
for DDRNet-39 and corresponding STMG module. We use a batch size of 4 with a cropping resolution
of 720 × 960 for CamVid and conduct all experiments using PyTorch. For a fair comparison, we
apply the same training setting to the corresponding STMG module. We train each model with two
GeForce RTX 2080 Ti GPUs for DDRNet-39 and corresponding STMG module in the same setting.

Experimental Results We further report the experimental results on CamVid [3] in Table 8, using
DDRNet-39 backbone network [17]. The results show that our method can achieve 70.2 FPS,
achieving 18.8% gain over the base model. We increase the FPS with less than 2% drop in accuracy.
That is, STMG provides a good trade-off comparable to state-of-the-art models on CamVid.

B Code and Dataset

Code and dataset are available at https://anonymous.4open.science/r/neurips2022stmg.
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C Additional Results on Cityscapes

Figure 10: Qualitative results on Cityscapes. Visualization examples of our STMG. First row:
Target Frame. Second row: STMG-DDR39. Third row: Ground Truth. Zoom in for best view.

Figure 11: Qualitative results of distortion-aware scheduling policy. Frames highlighted in red
represent key frames and other frames represent non-key frames. The fourth row shows that for static
video streams, the scheduling policy continues to perform partial computations on non-key frames.

Figure 12: Qualitative results of generated spatial mask visualization on Cityscapes. First row:
Target Frame. Second row: Generated Mask. Third row: Distortion Map. Zoom in for best view.
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D Additional Results on CamVid

Figure 13: Qualitative results of distortion-aware scheduling policy on CamVid. Frames high-
lighted in red represent key frames and other frames represent non-key frames. The fifth row shows
that the scheduling policy continues to perform partial computations for static video streams.

E Discussion

In this section, we discuss the limitation and potential negative societal impacts of our work.

Potential Societal Impacts A potential ethical threat is that our proposed method could be exploited
with malicious purpose to harm a society such as terrorism with limited computing resources (e.g.
drones for terrorism). Further, our method could be exploited in mobile applications that can generate
antisocial content, including real-time portrait matting for unethical deepfake videos. We hope that
our proposed method would not be utilized for such malicious purposes to harm the society.

Limitation In this work, we propose a novel framework for real-time speed up of video semantic
segmentation models by exploiting the spatial-temporal locality of video. However, since our method
targets real-time speed up and state-of-the-art real-time segmentation models are much faster than
optical flow estimation, our method does not utilize flow-based feature propagation. Due to these
properties, our method adopts a scheduling policy with a relatively short duration between key
and non-key frames compared to previous video segmentation frameworks, as errors propagate
when non-key frames are repeated. Further, since DBB [25]-inspired pruning method optimizes the
segmentation network while learning the pruning mask, our method uses different weights for key
and non-key frames. This results in memory inefficiency both in inference time and training time, as
two networks have to be loaded on the GPU. Because training a segmentation network requires a
large memory, training is performed only on two adjacent frames: a fixed key frame for the previous
frame and a trainable non-key frame for the current frame. We leave this limitation as future work.
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